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Abstract

Interest point detection and description have been cor-

nerstones of many computer vision applications. Hand-

crafted methods like SIFT and ORB focus on generic in-

terest points and do not lend themselves to data-driven

adaptation. Recent deep learning models are generally

either supervised using expensive 3D information or with

synthetic 2D transformations such as homographies that

lead to improper handling of nuisance features such as oc-

clusion junctions. In this paper, we propose an alterna-

tive form of supervision that leverages the epipolar con-

straint associated with the fundamental matrix. This ap-

proach brings useful 3D information to bear without requir-

ing full depth estimation of all points in the scene. Our

proposed approach, Epipolar Adaptation, fine-tunes both

the interest point detector and descriptor using a supervi-

sion signal provided by the epipolar constraint. We show

that our method can improve upon the baseline in a target

dataset annotated with epipolar constraints, and the epipo-

lar adapted models learn to remove correspondence involv-

ing occlusion junctions correctly.

1. Introduction

Interest point detection and description are important

building blocks for many computer vision tasks including

SLAM [6] and tracking [7]. Classic methods such as SIFT

and ORB are based on heuristics [13, 19, 1]. Thus, they

lack the ability to adapt to new data or to address known

pathological cases. When deploying an interest point de-

tector or descriptor in real-world applications in robotics or

mixed reality, inputs are environment-dependent. For exam-

ple, being able to detect interest points that are well suited to

animal tracking are unlikely to serve the purpose of a Mars

rover. As a result, it is desirable to make the interest point

detector and descriptor data-driven or learning-based.

Several recent works seek such adaptivity through use of

deep neural networks [2, 25, 5, 16]. These approaches gen-

erally rely on 3D information, such as depth [16] or outputs

from SfM [25], to provide ground truth point-to-point cor-

respondences for supervision. Such 3D information, how-
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Figure 1. Epipolar Adaptation takes a generic interest point system

and makes it adaptive to the target dataset of interest.

ever, is usually difficult to obtain. Obtaining depths for a

monocular scan, for example, requires the use of a spe-

cial device such as Kinect sensor during the data collec-

tion process. Prior works have also generated synthetic

datasets that are capable of providing such ground truth in-

terest points and correspondences [6, 5], yet creating such

synthetic dataset is laborious and requires sophisticated do-

main knowledge. SuperPoint circumvents this challenge by

using self-supervised methods such as homographic warp-

ing to create synthetic ground truth [5]. Self-supervised

methods relying only on 2D image transformation finds it

hard to reject misleading points such as occlusion junction

or cast-shadow features. For a purely rotating camera, oc-

clusion junctions are valid features. Similarly, for a stereo

rig, features formed by cast shadows are valid. In the case

of monocular video, both types of features lead to incorrect

or unreliable information about the scene. A data-adaptive

interest point detector and descriptor, yet, should be able to

cope with all abovementioned scenarios.

In this paper, we propose using the epipolar constraints

as an alternative source of supervision to make a data-

adaptive interest point detector and descriptor. Character-

ized by the fundamental matrix, the epipolar constraint of

two views map a point from one view to the epipolar line of

the other. This constraint provides a large number of neg-

ative correspondences since the corresponding point from

the other view must lay on the epipolar line. Compared to
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supervision from full 3D data, epipolar constraints are easy

to obtain since they are properties of the camera configura-

tion of two views. Only the camera intrinsic and the relative

pose between two cameras are needed to compute the fun-

damental matrix between two views. Therefore, epipolar

constraints depend solely on the camera configurations be-

tween two views, independent of 3D world geometry. It

is unlikely that a problematic interest point might lay in

the epipolar line throughout the whole data collection pro-

cess. As a result, epipolar constraints can rule out occlusion

junctions or time-dependent interest points such as corners

induced by shadows, provided that there are enough varia-

tions from the dataset.

We present an algorithm called Epipolar Adaptation that

leverages the negative correspondences provided by the

epipolar constraint to improve interest points detector and

descriptors. The Epipolar Adaptation algorithm takes a

generic interest point detector and descriptor, such as a

pretrained SuperPoint [5], and fine-tunes such model on a

new dataset with each image pair with the fundamental ma-

trix between them. We apply Epipolar Adaptation on two

types of datasets: stereo datasets and monocular datasets.

The image pairs from the stereo dataset are collected by

a fixed stereo camera rig, while the image pairs from the

monocular datasets are two frames of the monocular video

sequence. We demonstrate that Epipolar Adaptation im-

proves upon the pretrained SuperPoint in synthetic stereo

dataset SceneFlow [15] and in real-world monocular se-

quences from Freiburg RGB-D dataset [23].

2. Related Works

Interest Point Detection and Description. Most tradi-

tional interest-point detection and description methods are

hand-crafted [13, 1, 19]. These methods focus on interest

points in a generic setting and lack provision to adapt to-

ward a specific dataset. Many recent works try to use deep

learning to make a data adaptive interest-point detectors and

descriptors [2, 25, 5, 22, 16, 6, 20]. Most of them require

ground truth point-to-point correspondence between two

views [2, 25, 16, 22]. Such ground truth label is difficult to

obtain since it requires information about the 3D scene be-

hind the view (e.g. dense depth map or output of SfM). Su-

perPoint [5], MagicPoint [6], and Quad-Networks [20] use

synthetic 2D transformations (e.g., homography) to super-

vise the interest point detector and descriptor. Since these

2D transformations treat all pixels as textures in a plane,

it is difficult to handle nuisance features such as occlusion

junctions. This paper proposes an alternative form of super-

vision using the epipolar constraint. We show that such su-

pervision is easy to obtain and is capable of handling dataset

specific features.

Epipolar consistency as supervision. Epipolar geome-

try has been used as supervision signals in many tasks, such

Figure 2. The epipolar geometry between two views maps a point

from one view to the epipolar line of the other view. This point-to-

line relationship provides a large amount of strong negative corre-

spondences, but leaves the positive matches ambiguous.

as fundamental matrices estimation [17, 18], depth estima-

tion [8], ground plane estimation [14], semantic segmen-

tation [24], and pose detection [27]. Yi et al. [26] try to

find good correspondences by learning the weights for the

weighted 8-points algorithm using a regression toward the

essential matrix. Dang et al. [4] propose an alternative for-

mulation for eigenvalue-based optimization objectives that

allow more stable training for the objectives such as regress-

ing toward the fundamental matrix or the essential matrix.

These works leverage the epipolar geometry to supervise

the process of selecting the correspondences, but they do

not train the interest point detector or descriptor. Our work

focuses on the interest point detection and description task.

MONET [11] uses epipolar geometry between views to re-

duce the need for expensive annotations in the key-point

detection task. MONET relies on a sophisticated data aug-

mentation schema as well as a small number of ground truth

labels to bootstrap the training, while Epipolar Adaptation

is completely self-supervised.

3. Epipolar supervision

In this section, we will provide a brief overview of epipo-

lar geometry in Section 3.1. We will then show how to ob-

tain epipolar supervision from stereo image pairs (Sec 3.2)

and from pose-tagged monocular videos (Sec 3.3).
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3.1. Epipolar geometry

The epipolar geometry defines the intrinsic projective ge-

ometry between two views and is independent of the scene

structure [9]. Consider a pair of stereo images I and I ′

with camera center c, c′ respectively, and p is a point on

image I . All possible 3D points X corresponding to pixel

x will lay on the ray connecting c and p. Any projection of

X ′ ∈ ray(c, p) onto image plane I ′ will be a potential cor-

respondence pixel q′. The set of q′ forms the epipolar line

on the right image I ′ for point p. Knowing the epipolar ge-

ometry thus constraints the search of correspondences into

a single line, thus significantly reducing the search space.

Figure 2 illustrates this point to line relationship. Since a

pixel on the left image could only map to pixels near its

epipolar line, we can obtain a large number of negative cor-

respondences.

The epipolar geometry between two views is uniquely

characterized by the fundamental matrix F , which is a rank-

2 matrix satisfying qTFp = 0 for all correspondences p ∈ I

and q ∈ I ′. The fundamental matrix is usually estimated

by RANSAC and eigenvalue methods such as Normalized

Eight Point Algorithm [10, 9]. In the following sections, we

will introduce how to obtain the ground truth fundamental

matrix in the stereo setting and the monocular setting.

3.2. Epipolar constraints in stereo pairs

The fundamental matrix can be retrieved from a pair of

stereo images if we know the configuration of two cameras.

We assume that we have access to a rigid stereo camera rig,

and the stereo dataset S = {(Xi, Yi)}i is collected from this

fixed camera rig. The intrinsic parameters and relative cam-

era pose can be obtained by the standard camera calibration

procedure. Once we obtain the intrinsic parameters for two

cameras :K, K ′, and the relative rotation R and translation

t, the fundamental matrix can be obtained using

F = (K ′)−T [t]×RK−1,

where [t]x is the outer product matrix for vector t. Since the

fundamental matrix only depends on the intrinsic camera

parameters and the relative camera pose, it is independent

of the 3D scene structure [9]. The camera calibration needs

to be done only once, since as long as the relative position

between two cameras remains unchanged, the fundamental

matrix will remain unchanged for all pairs (Xi, Yi).

3.3. Epipolar constraints in monocular sequence

Typical ways to obtain point-to-point correspondences

from a monocular video sequence usually require recon-

structing the 3D scene. For example, prior works [23, 3]

scan the room with a Kinect sensor to obtain dense depth

maps for all the frames. Such 3D information is difficult

to obtain in high quality. However, establishing the epipo-

lar constraints between arbitrary two frames in a monocular

video is much easier. Since all frames are obtained from

the same camera, all frames share the same intrinsic param-

eters K, which can be obtained from the standard camera

calibration process. The key is to figure out the relative ro-

tation R and the relative translation t between camera cen-

ters for two frames. Assume that the translation from the

camera coordinate of frame i to the canonical coordinate is

ti and its relative rotation is Ri. A point xi in the cam-

era coordinate of frame i is transformed to the canonical

coordinate by xc = Rixi + ti, and xc = Rjxj + tj for

frame j. The transformation from i to j is then given by:

xj = R−1
j Rixi + R−1

j (ti − tj). The relative rotation from

ith frame to the jth one is Ri→j = R−1
j Ri, and the relative

translation is ti→j = R−1
j (ti−tj). Finally, the fundamental

matrix from frame i to frame j is

Fi→j = K−T [ti→j ]×Ri→jK
−1.

To obtain the fundamental matrices between all pairs of

frames, we only need to annotate each frame with its cam-

era pose information and calibrate the camera intrinsic. This

process does not require a full 3D reconstruction provided

by the public AR/VR libraries such as ARCore.

4. Epipolar adaptation

In this section, we will introduce the Epipolar Adapta-

tion algorithm, which improves a pretrained interest point

system on a dataset with epipolar supervision.

4.1. Notations

Let S = {(Xi, Yi, Fi)}i be a dataset with epipolar su-

pervision available, and Fi be the fundamental matrix from

image Xi to Yi. We want to fine-tune a pretrained Su-

perPoint model on S . Recall that SuperPoint will take

an image I ∈ R
H×W×3 and predict a feature map with

size Z ∈ R
Hc×Wc×h. Each pixel in this feature map Z

corresponds to an 8 × 8 pixels area in the original im-

age. From Z, SuperPoint will predict another feature map

X (I) ∈ R
Hc×Wc×65, where each pixel X (I)i,j ∈ R

65 in

this feature map encodes the probability of how likely one

of the 8 × 8 pixels inside the cell will be an interest point.

The last dimension of X (I)i,j represents that there is no in-

terest point in the cell. SuperPoint will also predict a feature

map D(I) ∈ R
Hc×Wc×D that contains the D-dimensional

feature descriptors for each cell. The feature descriptor of a

pixel from the original image is computed by bilinear inter-

polating D(I). In the following sections, we will introduce

how to use the outputs of the SuperPoint network and the

fundamental matrices to generate epipolar consistent corre-

spondences. These correspondences will be used to fine-

tune the SuperPoint network.
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Epipolar Consistent Set Fine­tuningPrediction

Figure 3. An illustration of three steps of the Epipolar Adaptation algorithm. First, we use a pretrained model to generate matches for all

image pairs in the dataset. Second, for each pair of images, we filter out the matches that are not epipolar consistent to create an epipolar

consistent set of matches. Finally, we use the epipolar consistent set of matches as ground truth to fine-tune the pre-trained models.

4.2. Epipolar consistent labels

To make the input generic model more data adaptive,

we need to provide supervision signal about whether a pair

of predicted correspondence is good or not in the target

dataset. Note that a good match should fulfill the epipo-

lar constraint, and the matches that do not fulfill the epipo-

lar constraint must be bad matches. Therefore, we can

test whether a match is epipolar consistent and can filter

out those that are not. One way to test whether a corre-

spondence agrees with the epipolar constraint is to compute

the symmetrical epipolar distance (SED), which captures

how far a point from the correspondence deviate from the

epipolar line of the other point [9]. If the correspondence

has large SED, then it must be an invalid match. Our net-

work should then be updated to reject such match either by

stopping proposing points in the correspondence as interest

points or by pushing the descriptor of these two points apart

so that they will not be matched again.

Let F be the fundamental matrix between two views.

Then, the symmetrical epipolar distance (SED) of a pair

of point (p, q) is given by:

SED(p, q, F ) = q̄TF p̄√
(F p̄)2

1
+(F p̄)2

2

+ p̄TFT q̄√
(FT q̄)2

1
+(FT q̄)2

2

,

where p̄, q̄ represent the homogeneous coordinates of

p, q respectively, and v1, v2 represent the first and sec-

ond coordinate of vector v respectively. Geometrically,

SED(p, q, F ) represents the sum of the distance from p to

epipolar line of q and the distance of q from the epipolar

line of p [9]. The unit of SED is pixel. Small SED indicates

that the correspondence fulfills the epipolar constraint.

Consider an image pair (Xi, Yi) ∈ S with fundamental

matrix Fi. We assume that one can obtain a list of matches

for them using the outputs of the pretrained SuperPoint net-

work : X (Xi),X (Yi),D(Xi),D(Yi). Note that our algo-

rithm is independent of the the inference algorithm. Let this

list of matches be Mi = {(pij , qij)}j , where pij is a point

in left image Xi and qij is pij’s corresponding point on right

image Yi. We would like to filter out correspondences that

Figure 4. Example of epipolar adapted labels. Each row dis-

plays an image pair. All the interest points are predicted by the

pretrained SuperPoint model. The red points will be filtered in

the epipolar adaptation process. Note that many of the filtered out

points are occlusion junctions.

do not satisfy the epipolar constraints between Xi and Yi:

EpiAda(Mi) = {(p, q) ∈ Mi, SED(p, q, Fi) < τ}.

Figure 4 provides examples of the epipolar consistent la-

bels. We can see that some of the interest points that violate

the epipolar constraints are occlusion junctions, which can

be filtered out when obtaining epipolar consistent labels.

4.3. Training Objectives

A good interest point detector should only detect points

that are matchable and correct in the target dataset. Points

in the epipolar adapted correspondences fulfill both crite-

rion with respect to the point-to-line mapping provided by

the epipolar geometry. We will use interest points from the

epipolar adapted correspondences as ground truth. Specif-

ically, let Y(I) ∈ R
Hc×Wc be such ground truth for X (I).

Our detector loss is SuperPoint’s original loss applied to

ground truth Y(I):

Ldet(I) =
1

HcWc

Hc,Wc
∑

h,w=1

− log
(

softmax(X (I)ij)Y(I)ij

)

.
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A good interest point descriptor should also be able to re-

ject correspondences that are invalid under the epipolar con-

straint. This provides us with a large amount of high quality

negative pairs and few positive pairs, since the epipolar con-

straint allow a point to be matched to any point in the epipo-

lar line on the target image. Learning only with point-to-line

constraints, however, tends to create bad matches since the

network can experience catastrophic forgetting of its prior

knowledge about how to match one point to the other. To

address such issue, we use the epipolar consistent interest

points pairs in the epipolar adapted set EpiAda(·) as the

strong positive pairs. Point pairs that are epipolar consis-

tent but not in EpiAda(·) will be marked as neither positive

nor negative.

To reduce computational burden, we will only consider

the maximum activated point in each cell. Let loc(I) ∈
R

Hc×Wc represent the maximum activated pixel for each

cell of image I . Let F be the fundamental matrix between

images X and Y , and let M be the predicted match of the

pretrained network for this image pair. Let C(X,Y, F ) ∈
R

Hc×Wc×Hc×Wc represent the label for all possible pairs

of cells between X and Y . Then

C(X,Y, F )iji′j′ =










−1 If SED(loc(X)ij , loc(Y )ij , F ) > τ

1 If (loc(X)ij , loc(Y )ij) ∈ EpiAda(M)

0 Otherwise

.

For each pair of cells with index i, j, i′, j′, let d = D(X)ij ,

d′ = D(Y )i′j′ , and c = C(X,Y, F )iji′j′ . Then, the loss for

this pair of cells is:

Lcell(d, d
′, c) = λposI(c = 1)max (0,mp − dT d′)

+ λnegI(c = −1)max (0, dT d′ −mn),

where λpos, λneg , mp and mn are hyper-parameters, and

I(·) is the indicator function. Note that the descriptor loss

will be zero for the cells that fulfills the epipolar constraint

but are not predicted by the network previously. The final

descriptor loss is:

Ldis(X,Y, F ) =
∑

ijkl

Lcell(D(X)ij ,D(X)kl,C(X,Y,F )ijkl)
(HcWc)2

Our final training objective is a combination of both the

detector loss and the descriptor loss:

L(X,Y, F ) = Ldet(X) + Ldet(Y ) + Ldes(X,Y, F ).

5. Experiment

In this section, we empirically evaluate the effectiveness

of our method in both stereo and monocular datasets. 1

1Codes will be available at https://github.com/stevenygd/

SuperPointEA

Figure 5. Validation performance. We can see that PECP@T and

PCP@T align well during training, indicating that PECP@T can

be used as a good approximation for PCP@T.

5.1. Dataset

We will evaluate the performance of our method in both

stereo and monocular datasets. We use the SceneFlow

dataset [15] for the stereo experiment. SceneFlow dataset

contains rectified stereo pairs of synthetic images. Recti-

fied stereo images provide the epipolar constraints where

the epipolar line is horizontal. We re-size all images down

to 464 × 256, a dimension that roughly matches that of

pretrained dataset. For monocular experiments, we use the

Teddy sequence of Freiburg RGB-D dataset [23]. We first

filter out frames that are blurry. We then pre-compute the

fundamental matrix using the provided intrinsic and cam-

era pose for all pairs of frames. We further filter out frame

pairs that do not have sufficient feature overlap. Finally, we

obtain 1000 frame pairs from the monocular sequence.

5.2. Evaluation Metrics

Let Il be the set of interest point predicted from the left

image and Ir from the right image. For all p ∈ Il, let G(p)
be p’s correct corresponding point on Ir. We use the fol-

lowing metrics to evaluate an interest point system.

Repeatability at radius T (REP@T) measures how

likely an interest point can be repeated in the target im-

age [21]. A point is considered repeated in the target image

if there exists an interest point from the target image that

is close to the correct corresponding point. Formally, for

radius T , REP@T can be computed as:

REPT (Il, Ir) =
|{p|∃q ∈ Ir, |G(p)− q| < T}|

min |Il|, |Ir|
.

Percentage of Correct Points at radius T (PCP@T)

evaluates how well the system can match the interest point

to the correct corresponding point on the target image. This

metric corresponds to the PCK@T used in [11]. Let C =
{(p, q)|p ∈ Il, q ∈ Ir} be the predicted correspondences.

For radius T , PCP@T is given by:

PCPT (C) =
|{(p, q)|(p, q) ∈ C, |q −G(p)| < T}|

|C| .

Note that both REP@T and PCP@T requires knowing

the dense ground truth correspondences between two im-
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Table 1. Performance in the SceneFlow dataset. SuperPointEA is

the model after Epipolar Adaptation. EA Labels are the epipolar

consistent labels (Sec 4.2).

Metric Model Test Performance (%)

PCP@2 SuperPoint 73.25

SuperPointEA 87.67

EA Labels 86.65

REP@2 SuperPoint 58.27

SuperPointEA 60.65

EA Labels 88.69

PECP@2 SuperPoint 81.88

SuperPointEA 93.64

EA Labels 100

ages. Such ground truth correspondences are difficult to

obtain. For the synthetic dataset SceneFlow, we compute

such ground truth from the dense disparity map. For the

real world monocular dataset, however, ground truth corre-

spondences obtained from 3D information are usually very

sparse. As a result, REP@T and PCP@T cannot be used

as a useful metric in such scenarios. Note that one can ob-

tain high quality ground truth fundamental matrices even in

a real-world dataset. We thus relax PCP@T to test instead

whether a correspondence fulfills the point-to-line relation-

ship from the epipolar geometry in the following metric:

Percentage of Epipolar Correct Points at radius

T (PECP@T) measures the percentage of interest point

matches that satisfy the epipolar constraints. Let F be the

fundamental matrix for the image pair of interest and T be

the tolerance margin. PECP@T is computed as follow:

PECPT (C) =
|{(p, q)|(p, q) ∈ C, SED(p, q, F ) < T}|

|C| .

Figure 5 shows that PECP@T is a good approximation for

PCP@T since the align well during training.

5.3. Stereo experiment

We run Epipolar Adaptation on pretrained SuperPoint

network with threshold τ = 2. We use Adam [12] with

learning rate 1e−5 to fine-tune the network for 100 epochs.

We set λpos = 300 and λneg = 1 to balance the number of

positive and negative examples. Other hyper-parameters are

adapted from SuperPoint [5]. Since we have ground truth

correspondences between views, we report all three metrics

for this experiment in Table 1 with the threshold set to be 2.

Note that the model after Epipolar Adaptation outperforms

the original SuperPoint model in all metrics. The perfor-

mance of SuperPointEA in PCP@2 can even match the per-

formance of the epipolar consistent labels used to fine-tune

Figure 6. Interest points predictions of stereo image pairs from

SuperPoint in the first row and SuperPointEA in the second row.

Green points are epipolar consistent, while red points are not. We

can see that SuperPointEA latches to points that are more epipolar

consistent and SuperPointEA predicts fewer occlusion junctions.

Table 2. Performance for monocular dataset. SuperPointEA refers

to the model after Epipolar Adaptation.

Model PECP@4 (%)

SuperPoint 33.73

SuperPointEA 34.73

SuperPointEA network. This result suggests that the Epipo-

lar Adaptation algorithm is able to make the baseline model

adaptive to the target stereo dataset. Figure 6 contains vi-

sualization for both SuperPoint and SuperPointEA, predicts

fewer occlusion junctions.

5.4. Monocular experiment

The monocular experiment is conducted in the Teddy se-

quence from Freiburg RGB-D dataset. Since the resolution

of this dataset is about 4 times as large as the stereo dataset,

we set the threshold for Epipolar Adaptation to be τ = 4.

During training, we set λpos = 1 and λneg = 1. Other

hyper-parameters are the same as in the stereo experiment.

Since the monocular dataset has precise fundamental matri-

ces between frames but no dense point-to-point correspon-

dence, we only report PECP@T in this experiment. The re-

sults are presented in Table 2. SuperPointEA out-performs

the baseline SuperPoint in this task, which suggests that

Epipolar Adaptation is able to make SuperPoint adaptive

to the target monocular dataset.

6. Conclusion and future works

This paper proposes and evaluates Epipolar Adapta-

tion, an algorithm that uses epipolar supervision to make a

generic interest point system adaptive to a dataset. Interest-

ing future works include generalizing Epipolar Adaptation

to more generic interest point systems.
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